

12 | P a g e

Web Application Pentesting Approach &

Remediation
Purva Bhesaniya

National Forensic Sciences University

Gandhinagar, India

purva15ub@gmail.com

Animesh Kumar Agrawal

National Forensic Sciences University

Gandhinagar, India

akag9906@gmail.com

Abstract— In this technophile world, the expansion in web

apps is enormous, and breaches and unauthorized access of

sensitive data from various platforms over the internet.

Hackers concentrate on web-based applications like shopping

carts. Web applications are hard to protect against security

flaws known as web application vulnerabilities. Web

application pen testing is fundamental to identifying existing

vulnerabilities. Buffer overflows, XSS attacks, CSRF attacks,

and SQL injections are all examples of these types of attacks.

In other words, once new technologies are demanded by the

globe, security testing could become a growing need. This

paper aims to understand the testing techniques of web apps

that penetrate and identify proper counter measurements by

understanding the various vulnerabilities precisely. The

OWASP top 10 vulnerabilities are studied in detail, and these

vulnerabilities need to be addressed with precautions and used

manual and automatic approaches.

Keywords—Pentesting, OWASP Top 10 vulnerability

I. INTRODUCTION

The development of web applications, relying on various
phases, possibly distributed over multiple platforms and
service providers, sometimes raise problems, specifically in
terms of security. Web application security is difficult to
assess, and web apps play an essential role in our daily lives.
In order to maintain users' trust, security measures must
include confidentiality, integrity, and other safeguards.
There, however, are some vulnerabilities that might allow
attackers to damage users due to the fact that no system is
completely safe. The erosion of trust among users has
impacted a significant part of the web application industry
model. Thus, it is essential to make sure that web pages are
secure. Penetration testing of online apps is required to
find/detect security flaws to preserve users' trust and data. It
entails determining whether a web application is vulnerable
to assaults using various tools and techniques often used by
penetration testers. Manual and automated testing are the two
main ways of this type of testing.

The manual approach is appropriate for complete app
inspection since it detects problems and loopholes that
automated tests bypass. In contrast, automated test results are
faster, more efficient, more straightforward, and more
trustworthy. It also automatically assess whether a machine
is susceptible to risk and how it can be mitigated. This
method does not require any prior knowledge. Nessus,
Metasploit, and OpenVAs are tools for automated
penetration testing. This document conducts manual and
automated procedures research and mentions a few OWASP

vulnerabilities and mitigation. It is usually preferable to
analyze faster; an automated technique is a fantastic example
of this, rather than a manual one. With the use of practical
results and examples, discuss the comparison. Various
examples are focused on to differentiate the perspectives of
approaches. Specifically, Section II elaborates on previous
studies concluded by experts on web application pen-testing
and their discussion of actual attack scenarios. For
understanding some OWSAP vulnerabilities, Section III
utilizes automated and manual approaches with attack
scenarios. Section IV explains the Mitigation strategies.
According to our observations and research findings, Section
V and VI summarizes our conclusions.

II. LITERATURE REVIEW

Web app pen-testing analyses by the researcher, the field
within web security. Penetration testers eagerly try to look
for vulnerabilities in websites and other platforms. Much
study has gone into Detecting Web Application
Vulnerabilities Using Penetration Testing and Threat
Modelling, which explains how to use various penetration
tools. This tool aids in the detection of Web application
vulnerabilities and provides Web attack trees for a better
understanding of attacks such as SQL injection and CSRF
attacks[1]. An open-source application called Penetration
Testing Analysis with Standardized Report Generation
distinguishes between automated and manual testing
processes. Aside from that, it uses a survey to highlight the
lack of a defined report format [2]. An approach to detecting
XSS vulnerabilities in web applications that employs both
static and dynamic approaches, which include static,
dynamic, safe programming, and modelling [3]. An
automated penetration testing process maintains the security
of a cloud application, as per Towards Automatic Security
Research for Cloud Platforms [4]. This study paper will
assist in comprehending the necessary countermeasures for
OWSAP vulnerabilities [5]. This article helps understand
neural networks to create a decision support tool and clarify
their advantages and disadvantages [6]. Using an IDS to
analyze penetration testing tool traffic can help identify
weaknesses in web applications and evaluate the importance
of using Snort to analyze tools, which helps identify
vulnerabilities [7]. GuruWS is a tool that analyses
experiments and functional improvements to the GuruWS
platform to identify web application vulnerabilities and help
resolve them by providing a solution [8]. Various tools and
techniques implemented in web apps describe the limitations
of automated penetration testing technologies and

mailto:purva15ub@gmail.com
mailto:akag9906@gmail.com

13 | P a g e

recommend that manual testing complete the assessment [9].
This paper will focus on understanding the situation where
the hacker can easily hack the users' sensitive information
from the various web applications using OWSAP top 10
vulnerabilities, which would demonstrate. It will also discuss
the two approaches to web application penetration testing.

III. ATTACK SCENARIOS

OWSAP's 2021 flaws describe using Manual and
Automated techniques that a hacker might use to obtain
access to the website—followed by a specific scenario that
an attacker could utilize. The flaws of OWSAP discuss.
There are numerous other ways that attackers try to harm
websites. There is a discussion of Only the most common
vulnerabilities.

A. Lab Setup

The following lab setup is required in a virtual
environment to perform vulnerability scanning. It would
understand a few OWSAP 2021 vulnerabilities to understand
the difference between the two main penetration testing
techniques. Fig 1 explains the methodology.

Fig. 1. Lab setup

B. Sample attack scenario

For this research paper, a website that would use
download from the git-hub plat-form. After that, configure
the website on windows server 2022 with the IIS and SQL
database management plugins. The website can access
Windows ten pro, a client machine, and Kali Linux is an
attacker machine. Then use a PFsense Tool to isolate the
virtual environment from the host machine and configure a
private network. Following, it focuses on OWSAP 2021
vulnerabilities.

C. Injection Flows

A vulnerability known as an injection flaw allows

untrusted data to be accessed and executed by a code or

query contained in a web application. A malicious attack

would construct malicious orders or queries to exploit

injection flaws. In the worst scenario, data would be lost, or

corrupted, accountability would be lacking, or users would

be denied access.

D. Broken Access Control

The notion of Broken Access Control refers to the

possibility of attackers accessing, modifying, deleting, or

performing actions outside an application or system's

intended permissions. As a consequence of Broken Access

Control, users can change parameters in URLs, view or

modify one's own data, or gain privileges if attacker change

parameters in the URL.

E. Security Misconfiguration

In most cases, security misconfigurations occur at the

platform, web server, application server, framework, and

custom code levels within an application stack. An

incorrectly configured server, for example, could cause

various issues that could compromise the site's security.

F. Identification and Authentication Failures

Passwords can still be guessed by automated attacks

such as credential stuffing and brute-force attacks. There are

flaws in the process of resetting a password or recovering it.

No handling of identifying session identifiers after

email/password updates, logouts, inactivity, or logging.

IV. COUNTERMEASURES

This session addresses the mitigation and counter-
measurement of web application vulnerabilities. There are a
few counterarguments to take to secure the web application.

A. Web application firewalls

Web application firewalls are Software and hardware that
help block traffic and monitor it.

B. Information gathering

Information gathering Support in examining and
collecting third-party data and material to identify client-side
codes and access points.

C. Authorization

Track traversals should be tested correctly in the web
application, and allowed access should be blocked. It
improves the prevention of insecure logins and the loss of
sensitive information.

14 | P a g e

D. Cryptography

Encrypts specific data, checks for random flaws, and
bypasses incorrect algorithms to ensure that all data
transmissions are secure.

E. Denial of service

Using its anti-automation, HTTP protocol DoS, account
lockout, and SQL wildcard DoS tools, applications can be
made more resilient to denial-of-service attacks. Utilize
scalable resources and filtering solutions together to prevent
DDoS and DoS attacks.

V. RESULTS

Developers of web applications are vigilant when it
comes to mitigating common security flaws. Even with their
best efforts, there will still be some vulnerabilities in the
application. There are a number of mitigation techniques
explained in the previous section. This section usually
consists of sound tactics for preventing assaults, as long as
developers use alerts when implementing. Vulnerabilities
will still exist despite the adoption of those strategies. There
is a link between the Several specific conditions and
vulnerabilities listed here. This section consists of automatic
and manual procedures using open-source software.

An overall view of the study is provided by combining
web penetration testing with application testing. In addition,
the paper provides mitigation options to overcome the
vulnerabilities in the web applications.

A. Footprint of Web Infrastructure

It is a process of gathering complete information about
the target web application, its related component, and how it
works with the Nmap tool's help. this command Nmap -sS -
O 192.168.1.104 && Sudo Nmap -sS -A 192.168.1.104

B. Auditing Web Application Framework Using Vega

Vega is a free, open-source, graphical web-auditing tool.
It helps to identify XSS and SQL injection Vulnerabilities.
Vega gives us summary alert vulnerability with High/ low/
medium on the website.

Fig. 2. Vega Framework

C. XSS Vulnerability in Web Application

With the help of a script, an attacker can enter malicious
scripts in the database from the table content page, like
entering contact information.

script <script>alert("You are hacked")</script>

Fig. 3. XSS Vulnerability

D. SQL injection

The attacker login the web application with the help of
the database query. Moreover, log in with a fake identity and
access the users' sensitive data. Apart from that attacker
create, update and delete the SQL database.

Type the query blah' or 1=1: Use names as login names
in the Username, and leave the password blank. To log in,
click the Login button.

Fig. 4. SQL injection- Fake login

In the username field, type query blah';insert into login
values ('john','apple123"); --

15 | P a g e

Fig. 5. SQL injection – Insert values in the database

This query creates a new database. Type the query blah';
create a database; --

Fig. 6. SQL injection – Create a new database.

VI. CONCLUSION

To find vulnerabilities in web applications, pen testing
requires. Additionally, vulnerability testing is divided into
two types. It depends on the circumstances whether manual
or automatic approaches work best. As evidenced by the
above situations, manual testing is more effective in
detecting unique vulnerabilities. Because automatic testing
upon the most prevalent flaws frequently ignores the
uncommon ones. Indeed, automated scanners are more
successful in circumstances when common vulnerabilities
must examine, saving the tester a significant amount of time.
It is also better to look for sensitive information where it
could keep. There are many possibilities for web application
attacks, and this paper does not cover them all. In this study,
a select handful is highlighted. The tests for these situations
also use locally run web applications explicitly designed to
test them. Performing manual penetration testing on a real-
world web application under these circumstances may not be
able to detect such flawthr. This research will help the read
team, penetration testers, and security analysts understand

the complete scenario of web app hacking from the attacker's
perspective.

REFERENCES

[1] Van-Giap Le, Huu-Tung Nguyen, Duy-Phuc Pham, Van-On Phung,
and Ngoc-Hoa Nguyen, GuruWS: A Hybrid Platform for Detecting
Malicious Web Shells and Web Application Vulnerabilities, 2019.

[2] Ms. Shweta Thakre, Studying the Effectiveness of Various Tools in
Detecting the Protecting Mechanisms Implemented in Web-
Applications, 2018.

[3] Mallick, P. K., Bhoi, A. K., Chae, G.-S., & Kalita, K. (Eds.). (2021).
Advances in Electronics, Communication and Computing. Lecture
Notes in Electrical Engineering.

[4] Debahuti Mishra, Rajkumar Buyya, Prasant Mohapatra, Srikanta
Patnaik, Series: Smart Innovation, Systems and Technologies 153
Publisher: Springer Singapore;Springer, Year: 2021.

[5] Casola, V., De Benedictis, A., Rak, M., & Villano, U. (2018).
Towards Automated Penetration Testing for Cloud Applications.
2018 IEEE 27th International Conference on Enabling Technologies:
Infrastructure for Collaborative.

[6] Tetskyi, A., Kharchenko, V., & Uzun, D. (2018). Neural networks
based choice of tools for penetration testing of web applications. 2018
IEEE 9th International Conference on Dependable Systems, Services
and Technologies (DESSERT).

[7] Muñoz, F. R., Armas Vega, E. A., & Villalba, L. J. G. (2016).
Analyzing the traffic of penetration testing tools with an IDS. The
Journal of Supercomputing.

[8] K Nagendran, A Adithyan, R Chethana, P Camillus and Sri Varshini
K B Bala, "Web Application Penetration Testing", International
Journal of Innovative Technology and Exploring Engineering
(IJITEE), vol. 8, no. 10, August 2019, ISSN 2278-3075

[9] Kristian Beckers, Sebastian Pape, Peter Schaab and Daniel Schosser,
Conference: International Conference on Trust and Privacy in Digital
Business, August 2017.

[10] Tae Hyun Kim and Douglas Reeves, A survey of domain name
system vulnerabilities and attacks, January 2020.

[11] Rizdqi Akbar Ramada, Redho Maland and Dedi Hariyadi, "Sudomy:
Information Gathering Tools for Subdomain Enumeration and
Analysis", The 2nd International Conference on Engineering and
Applied Sciences 2019 (2nd InCEAS 2019), vol. 771, March 2020.

[12] Mayur Parmar, Google Dorks -Advance Searching Technique,
August 2019.

[13] Mamta Bhavsar, Priyanka Sharma and Manik Gokani, "Port Scanning
using Nmap", published at International Journal of Engineering
Development and Research, December 2017.

[14] Mandala Mounica, R Vijayasaraswathi and R Vasavi, "Detecting
Sybil Attack In Wireless Sensor Networks Using Machine Learning
Algorithms", IOP Conference Series: Materials Science and
Engineering, 2021.

[15] Delaitre AM, Stivalet BC, Black PE, Okun V, Cohen TS, Ribeiro A
(2018) Sate v report: Ten years of static analysis tool expositions.
NIST SP 500-326, National Institute of Standards and Technology
(NIST).

[16] Doupé A, Cova M, Vigna G (2010) Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners. In: International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, Springer, pp. 111–131

[17] Fonseca J, Vieira M, Madeira H (2007) Testing and comparing web
vulnerability scanning tools for sql injection and xss attacks. In: 13th
Pacific Rim international symposium on dependable computing
(PRDC 2007), IEEE, pp. 365–372

16 | P a g e

[18] MITRE (2021) Cwe view: Weaknesses in owasp top ten (2021). In:
(MITRE 2021b), https://cwe.mitre.org/data/definitions/1344.html.
Accessed 09 Dec 2021.

